Integrate scRNA-seq datasets#
!lamin load test-scrna
Show code cell output
π‘ found cached instance metadata: /home/runner/.lamin/instance--testuser1--test-scrna.env
β
loaded instance: testuser1/test-scrna
import lamindb as ln
import lnschema_bionty as lb
import pandas as pd
import anndata as ad
β
loaded instance: testuser1/test-scrna (lamindb 0.51.0)
ln.track()
π‘ notebook imports: anndata==0.9.2 lamindb==0.51.0 lnschema_bionty==0.30.0 pandas==1.5.3
β
saved: Transform(id='agayZTonayqAz8', name='Integrate scRNA-seq datasets', short_name='scrna2', version='0', type=notebook, updated_at=2023-08-28 13:51:37, created_by_id='DzTjkKse')
β
saved: Run(id='cMROWvjBDVTAPpvUiwf5', run_at=2023-08-28 13:51:37, transform_id='agayZTonayqAz8', created_by_id='DzTjkKse')
Query files based on metadata#
# lookup objects for auto-complete
assays = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
query = ln.File.filter(
experimental_factors=assays.single_cell_rna_sequencing, # scRNA-seq
species=species.human, # human
cell_types__name__contains="monocyte", # monocyte
).distinct()
query.df()
storage_id | key | suffix | accessor | description | version | initial_version_id | size | hash | hash_type | transform_id | run_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
L7srPtuIfV1AWTBQTWYo | 7gYw68gC | None | .h5ad | AnnData | Conde22 | None | None | 28049505 | WEFcMZxJNmMiUOFrcSTaig | md5 | Nv48yAceNSh8z8 | ujzl8FtsURX7meXQWLrn | 2023-08-28 13:51:20 | DzTjkKse |
SIdlfiN2VEwYVeGfIcBS | 7gYw68gC | None | .h5ad | AnnData | 10x reference pbmc68k | None | None | 589484 | eKVXV5okt5YRYjySMTKGEw | md5 | Nv48yAceNSh8z8 | ujzl8FtsURX7meXQWLrn | 2023-08-28 13:51:31 | DzTjkKse |
Intersect measured genes between two datasets#
# get file objects
file1, file2 = query.list()
file1.describe()
π‘ File(id='L7srPtuIfV1AWTBQTWYo', key=None, suffix='.h5ad', accessor='AnnData', description='Conde22', version=None, size=28049505, hash='WEFcMZxJNmMiUOFrcSTaig', hash_type='md5', created_at=2023-08-28 13:51:20, updated_at=2023-08-28 13:51:20)
Provenance:
ποΈ storage: Storage(id='7gYw68gC', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-28 13:51:35, created_by_id='DzTjkKse')
π transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-28 13:51:31, created_by_id='DzTjkKse')
π£ run: Run(id='ujzl8FtsURX7meXQWLrn', run_at=2023-08-28 13:50:41, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
π€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 13:51:35)
Features:
var (X):
π index (36503, bionty.Gene.id): ['0tqWIZ0EwOF6', 'rT0Xjh7mbeht', '3WrrzHSaNKiX', 'S0H0s3WM12iQ', 'z7loK3Eqm6rq'...]
obs (metadata):
π cell_type (32, bionty.CellType): ['naive B cell', 'effector memory CD4-positive, alpha-beta T cell', 'regulatory T cell', 'animal cell', 'gamma-delta T cell']
π assay (4, bionty.ExperimentalFactor): ["10x 5' v2", "10x 3' v3", "10x 5' v1", 'single-cell RNA sequencing']
π tissue (17, bionty.Tissue): ['lamina propria', 'blood', 'duodenum', 'bone marrow', 'spleen']
π donor (12, core.Label): ['621B', 'A29', 'A35', '637C', 'A36']
file1.view_lineage()
file2.describe()
π‘ File(id='SIdlfiN2VEwYVeGfIcBS', key=None, suffix='.h5ad', accessor='AnnData', description='10x reference pbmc68k', version=None, size=589484, hash='eKVXV5okt5YRYjySMTKGEw', hash_type='md5', created_at=2023-08-28 13:51:31, updated_at=2023-08-28 13:51:31)
Provenance:
ποΈ storage: Storage(id='7gYw68gC', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2023-08-28 13:51:35, created_by_id='DzTjkKse')
π transform: Transform(id='Nv48yAceNSh8z8', name='Validate & register scRNA-seq datasets', short_name='scrna', version='0', type='notebook', updated_at=2023-08-28 13:51:31, created_by_id='DzTjkKse')
π£ run: Run(id='ujzl8FtsURX7meXQWLrn', run_at=2023-08-28 13:50:41, transform_id='Nv48yAceNSh8z8', created_by_id='DzTjkKse')
π€ created_by: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-08-28 13:51:35)
Features:
var (X):
π index (695, bionty.Gene.id): ['VPG6Ybxhk9ss', 'zOUVvOZ5PDec', '3z0yr6iybn0l', 'R0KxhGBHlynU', 'VSc0IwLJsfrD'...]
external:
π assay (1, bionty.ExperimentalFactor): ['single-cell RNA sequencing']
π species (1, bionty.Species): ['human']
obs (metadata):
π cell_type (9, bionty.CellType): ['conventional dendritic cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'dendritic cell', 'cytotoxic T cell']
file2.view_lineage()
Load files into memory:
file1_adata = file1.load()
file2_adata = file2.load()
π‘ adding file L7srPtuIfV1AWTBQTWYo as input for run cMROWvjBDVTAPpvUiwf5, adding parent transform Nv48yAceNSh8z8
π‘ adding file SIdlfiN2VEwYVeGfIcBS as input for run cMROWvjBDVTAPpvUiwf5, adding parent transform Nv48yAceNSh8z8
Here we compute shared genes without loading files:
file1_genes = file1.features["var"]
file2_genes = file2.features["var"]
shared_genes = file1_genes & file2_genes
len(shared_genes)
695
shared_genes.list("symbol")[:10]
['BTG1',
'EFHD2',
'TNFSF13B',
'SFPQ',
'GSTP1',
'POP5',
'ELOVL5',
'GIMAP7',
'CFP',
'PPIA']
We also need to convert the ensembl_gene_id to symbol for file2 so that they can be concatenated:
mapper = pd.DataFrame(shared_genes.values_list("ensembl_gene_id", "symbol")).set_index(
0
)[1]
mapper.head()
0
ENSG00000133639 BTG1
ENSG00000142634 EFHD2
ENSG00000102524 TNFSF13B
ENSG00000116560 SFPQ
ENSG00000084207 GSTP1
Name: 1, dtype: object
file2_adata.var.rename(index=mapper, inplace=True)
Intersect cell types#
file1_celltypes = file1.cell_types.all()
file2_celltypes = file2.cell_types.all()
shared_celltypes = file1_celltypes & file2_celltypes
shared_celltypes_names = shared_celltypes.list("name")
shared_celltypes_names
['conventional dendritic cell',
'CD16-positive, CD56-dim natural killer cell, human']
We can now subset the two datasets by shared cell types:
file1_adata_subset = file1_adata[
file1_adata.obs["cell_type"].isin(shared_celltypes_names)
]
file2_adata_subset = file2_adata[
file2_adata.obs["cell_type"].isin(shared_celltypes_names)
]
Concatenate subseted datasets:
adata_concat = ad.concat(
[file1_adata_subset, file2_adata_subset],
label="file",
keys=[file1.description, file2.description],
)
adata_concat
AnnData object with n_obs Γ n_vars = 126 Γ 0
obs: 'cell_type', 'file'
obsm: 'X_umap'
adata_concat.obs.value_counts()
cell_type file
CD16-positive, CD56-dim natural killer cell, human Conde22 114
conventional dendritic cell Conde22 7
CD16-positive, CD56-dim natural killer cell, human 10x reference pbmc68k 3
conventional dendritic cell 10x reference pbmc68k 2
dtype: int64
Show code cell content
# clean up test instance
!lamin delete --force test-scrna
!rm -r ./test-scrna
π‘ deleting instance testuser1/test-scrna
β
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-scrna.env
β
instance cache deleted
β
deleted '.lndb' sqlite file
β consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna